Bjelajac A., Petrovic R., Stefanovic M., Phillipe A.M., Fleming Y., Guillot J., Chemin J.B., Choquet P., Kadok J., Bulou S.
Catalysis Science and Technology, vol. 14, n° 18, pp. 5342-5351, 2024
Herein, we present the effectiveness of using an atmospheric pressure dielectric barrier discharge (DBD) plasma torch for gold (Au) nanoparticle (NP) decoration of TiO<sub>2</sub> nanoparticles and nanotubes (NTs). Au NPs were synthesised using an aerosol of HAuCl<sub>4</sub>·3H<sub>2</sub>O solution that was carried with an inert gas to the near plasma post-discharge zone. Careful optimisation of the deposition parameters was done to ensure the uniform and dispersed decoration of TiO<sub>2</sub>, demonstrated by scanning and transmission electron microscopy with energy dispersive spectroscopy. The X-ray diffraction was used to confirm that the deposit was pure metallic Au. Unlike the bare TiO<sub>2</sub> nanoparticles, the samples with Au NPs showed the plasmon resonance peak in the region of 500-600 nm. The photocatalytic property enhancement of Au NP decorated TiO<sub>2</sub> structures was demonstrated: The TiO<sub>2</sub> NPs@Au nanoparticular powder showed improved photocatalytic activity by enabling methyl orange dye degradation 35% faster than that of the pristine TiO<sub>2</sub> NPs; superior photocatalytic behaviour of TiO<sub>2</sub> NTs@Au thin films compared to bare TiO<sub>2</sub> NTs was observed in the photodegradation of stearic acid.
