On the Addition of Multifunctional Methacrylate Monomers to an Acrylic-Based Infusible Resin for the Weldability of Acrylic-Based Glass Fibre Composites

Perrin H., Bodaghi M., Berthé V., Vaudemont R.

Polymers, vol. 15, n° 5, art. no. 1250, 2023

Abstract

The melt strength of Elium<sup>®</sup> acrylic resin is an important factor to ensure limited fluid flow during welding. To provide Elium<sup>®</sup> with a suitable melt strength via a slight crosslink, this study examines the effect of two dimethacrylates, namely butanediol-di-methacrylate (BDDMA) and tricyclo-decane-dimethanol-di-methacrylate (TCDDMDA), on the weldability of acrylic-based glass fibre composites. The resin system impregnating a five-layer woven glass preform is a mixture of Elium<sup>®</sup> acrylic resin, an initiator, and each of the multifunctional methacrylate monomers in the range of 0 to 2 parts per hundred resin (phr). Composite plates are manufactured by vacuum infusion (VI) at an ambient temperature and welded by using the infrared (IR) welding technique. The mechanical thermal analysis of the composites containing multifunctional methacrylate monomers higher than 0.25 phr shows a very little strain for the temperature range of 50 °C to 220 °C. The quantity of 0.25 phr of both of the multifunctional methacrylate monomers in the Elium<sup>®</sup> matrix improves the maximum bound shear strength of the weld by 50% compared to those compositions without the multifunctional methacrylate monomers.

People

PERRIN Henri

Advanced composite manufacturing and testing

Send an email

BODAGHI Masoud

BODAGHI Masoud

Advanced composite manufacturing and testing

Send an email

BERTHE Vincent

Responsive Polymeric and Particulate Materials

Send an email

VAUDEMONT Régis

Advanced composite manufacturing and testing

Send an email

How can we help you?

By content type (optional)